

Validation of Real-Time IRI timelines of F2 layer peak height and density

Artem Vesnin¹, Larisa Goncharenko², Qiu-Gang Zong^{1,3}, Ivan Galkin¹, Bodo Reinisch^{1,4}, and Dieter Bilitza^{5,6}

University of Massachusetts Lowell / Center for Atmospheric Research / Physics Department
 Haystack Observatory, MIT
 Peking University, Beijing
 Lowell Digisonde International, LLC
 George Mason University, Space Weather Laboratory
 Heliophysics Laboratory, NASA Goddard Space Flight Center

Real-Time-IRI Task Force Meeting Lowell, MA May 19, 2014

IRTAM v0.1B

Time UT = 2004/01/07 19:22:00

Outline

Statistics of IRTAM versus GIRO
Statistics of IRTAM versus IRI
Case study: January 2013 SSW
Case study: November 2004 IP Shock
Future work

IRTAM v0.18

Time UT = 2004/11/07 19:22:00

IRTAM versus GIRO

IRTAM versus GIRO (2)

Spatial domain smoothing

Error Statistics: IRTAM versus GIRO

$$\overline{\varepsilon}_{R} = \frac{\sum_{n=1}^{N} \left| R_{n} - O_{n} \right|}{N}$$

 R_n = IRTAM, O_n – observation

[Note that O_n is not error-free]

foF2 average per-point error is 0.40 MHz

hmF2 average per-point error is 15.5 km

N is ~50 stations for 365 days in 2011 = 1.7×10^{6}

Error Statistics: IRTAM versus IRI

Percent improvement

Improvement Factor R1 *F*

$$\overline{\varepsilon}_{I} = \frac{\sum_{n=1}^{|I_{n} - O_{n}|}}{N}$$

$$Q = \frac{\overline{\varepsilon}_{I} - \overline{\varepsilon}_{R}}{\overline{\varepsilon}_{I}} \cdot 100\%$$

$$R1 = \frac{\sum_{n=1}^{N} (I_{n} - O_{n})^{2}}{\sum_{n=1}^{N} (R_{n} - O_{n})^{2}} = \frac{\sum_{n=1}^{N} \varepsilon_{I}^{2}}{\sum_{n=1}^{N} \varepsilon_{R}^{2}}$$

 $\sum_{i=0}^{N} |I_{i}|$

Improvement Factor R2 $R2 = \frac{\overline{\varepsilon}_I}{\overline{c}}$

Improvement Factor R3

$$Z = \frac{1}{\overline{\mathcal{E}}_R}$$

$$R3 = \sum_{n=1}^N \left[\frac{I_n - O_n}{R_n - O_n} \right]^2$$

Error Statistics: IRTAM versus IRI

foF2	hmF2
• IRI average p-p error: 0.83 MHz	IRI average p-p error: 30 km
• IRTAM average p-p error: 0.40 MHz	 IRTAM average p-p error: 15.5 km
 Improvement R1 = 1.98 	 Improvement R1 = 1.83
 Improvement R2 = 2.08 	 Improvement R2 = 1.94

IRTAM v0.16

Time UT = 2004/01/07 19:22:00

SSW Case of January 2013

Plans for South American Ionosondes

IP Shock Event November 2004

Check Qiu-Gang Zong presentation tomorrow for more case study examples

Red Spot over Africa

Red spot over Africa (2)

👍 IRI Real-Time Assimilative Map Layers . ✓ Stars a Sky Time UT - 2011.12.25 18:22:00 IRTAM VO.1B ✓ NASA Blue Marble Image Blue Marble (WMS) 2004 -**RTAM Control and Display** 25 2011 12 18 22 Now GIRO Assimilate Report FOF2_RTAM_VS_IRI ¥ Surface FOF2_GIRO_VS_IRI 0 Sites ¥ Color scale 0 World Flat Round * Projection: Mercator INTERNATIONAL Map: foF2 (IRT/AM-IRI) MHz Circles(sites): foF2 (GIRO-IRI) MHz **Assimilative Map** RI 1.5 29 -1.5 0 1.5 2.9 -2.9 -1.5 0 29 IONOSPHERE Altitude 28,447 km **Off Globe**

Predictive IRTAM capabilities?

Future Work

- Error histograms: compute uncertainties
- Time-domain gap filling technique is needed
- Higher orders? Versus IRI compatibility
- Interface to IRI portals (IRI, CEDAR)
- Build GAMBIT database
 - Cut latency for outside users
 - Statistical studies
 - Dissemination of coefficient updates
- Build web-layer to GAMBIT database