

Real-Time IRI Driven by GIRO Data

Ivan Galkin, Bodo Reinisch, Xueqin Huang, Dieter Bilitza, and Artem Vesnin

University of Massachusetts Lowell / Center for Atmospheric Research / Physics Department Lowell Digisonde International, LLC George Mason University, Space Weather Laboratory Heliophysics Laboratory, NASA Goddard Space Flight Center

Real-Time-IRI Task Force Meeting Lowell, MA May 19, 2014

IRTAM v0.16

Time UT - 2004:01.07 19:22:00

Real-Time Fusion of IRI model and GIRO observations

IRTAM vo.16

Time UT = 2004/01/07 19:22:00

http://giro.uml.edu/IRTAM

American National Standard (AIAA, 2011) listed 46 ionospheric models

Real-Time Deviation of F2 Peak from Expected Climatology

IRTAM vo.16

Time UT = 2004501107 19:22:00

http://giro.uml.edu/IRTAM

American National Standard (AIAA, 2011) listed 46 ionospheric models

Jones-Garret Expansion for foF2 maps in IRI

Diurnal expansion – classic Temporal Harmonics of 6th degree (13 coefficients) Spatial expansion – highly customized Geographic functions Gk (76 coefficients)

Assimilation Design: produce new coefficients; keep classic base functions

76 Gk base functions	012	l sin x sin ² x	40 41 42	$\begin{array}{c} \sin^2 x \cos^2 \lambda \cos 2\theta \\ \sin^2 x \cos^2 \lambda \sin 2\theta \\ \sin^3 x \cos^2 \lambda \cos 2\theta \end{array}$
Classic Longitudinal Harmonics 8 th order	34 56 78 9.0 11	sin ³ x sin ⁴ x sin ⁵ x sin ⁶ x sin ⁷ x sin ⁹ x sin ⁹ x sin ¹⁰ x sin ¹¹ x	4344 4546 4748 49 50 51 50	$\sin^3 x \cos^2 \lambda \sin 2\theta$ $\sin^4 x \cos^2 \lambda \cos 2\theta$ $\sin^4 x \cos^2 \lambda \sin 2\theta$ $\sin^5 x \cos^2 \lambda \cos 2\theta$ $\sin^5 x \cos^2 \lambda \sin 2\theta$ $\sin^5 x \cos^2 \lambda \sin 2\theta$ $\sin^5 x \cos^2 \lambda \cos 2\theta$ $\sin^5 x \cos^2 \lambda \sin 2\theta$ $\sin^7 x \cos^2 \lambda \cos 2\theta$ $\sin^7 x \cos^2 \lambda \sin 2\theta$
	12	cos λ cos θ	53	sin ^θ x cos ² λ sin 2θ
$G_{k} = \left(\sin^{n} \chi\right) \cdot \left(\cos^{m} \lambda\right) \cdot \begin{bmatrix}\cos m\theta\\\sin m\theta\end{bmatrix}$	13 14 15 16 17 18 19 0 12 23 24	$\begin{array}{c} \cos \lambda \sin \theta \\ \sin x & \cos \lambda \cos \theta \\ \sin x & \cos \lambda \sin \theta \\ \sin^2 x \cos \lambda \cos \theta \\ \sin^2 x \cos \lambda \cos \theta \\ \sin^2 x \cos \lambda \sin \theta \\ \sin^3 x \cos \lambda \cos \theta \\ \sin^4 x \cos \lambda \cos \theta \\ \sin^4 x \cos \lambda \sin \theta \\ \sin^5 x \cos \lambda \cos \theta \\ \sin^5 x \cos \lambda \sin \theta \\ \sin^5 x \cos \lambda \sin \theta \\ \sin^6 x \cos \lambda \sin \theta \\ \sin^6 x \cos \lambda \sin \theta \\ \end{array}$	54 55 6 57 58 59 66 162 63	$\begin{array}{c} \cos^3 \lambda \cos 3\theta \\ \cos^3 \lambda \sin 3\theta \\ \sin x \cos^3 \lambda \cos 3\theta \\ \sin x \cos^3 \lambda \cos 3\theta \\ \sin x \cos^3 \lambda \sin 3\theta \\ \sin^2 x \\ \sin^2 x \\ \sin^3 x \\ \sin^3 x \\ \sin^3 x \\ \sin^4 x \\ \cos^3 \lambda \\ \sin^3 \theta \\ \sin^4 x \\ \cos^3 h \\ \cos^3 h \\ \sin^4 x \\ \cos^4 h \\ \cos^$
·	25 26	$sin^6 \times cos$ n=011 $sin^7 \times cos$ m=1	65	cc n=01 40
$\chi(\lambda,\theta) = \arctan \frac{I(\lambda,\theta)}{\sqrt{\cos \theta}}$	27 28 30 31 32 33	sin ⁷ x cos sin ⁸ x cos λ cos θ sin ⁸ x cos λ sin θ sin ⁹ x cos λ cos θ sin ⁹ x cos λ sin θ sin ¹⁰ x cos λ cos θ sin ¹⁰ x cos λ sin θ sin ¹⁰ x cos λ sin θ	67 68 69 70 71	$\frac{\sin x}{\sin x} \frac{cq}{cos} \frac{m=4}{4\theta}$ $\frac{\cos^5 \lambda}{\cos^5 \lambda} \frac{\cos 5\theta}{\sin 5\theta}$ $\frac{\cos^5 \lambda}{\cos^5 \lambda} \frac{\cos 6\theta}{\cos^5 \lambda} \frac{\cos 6\theta}{\sin 6\theta}$
m = 08	35	$\sin^{2} x \cos \chi \sin \theta$	72	0087) 008 79
$n(m) = \{11\ 11\ 8\ 4\ 1\ 0\ 0\ 0\ 0\}$	36	cos ² n=0.8	73	cos7 λ sin 7θ
(11,11,0,1,1,0,0,0)	38 39	$ \begin{array}{c} \text{sin x} & \cos^2 \\ \text{sin x} & \cos^2 \\ \end{array} \begin{array}{c} \text{m=2} \\ \text{m=2} \end{array} $	74 75	$\begin{array}{c}\cos^{8}\ \lambda\ \cos\ 8\theta\\\cos^{8}\ \lambda\ \sin\ 8\theta\end{array}$

Spatial base function examples

k=0

k=13

k=3

k=16

k=12

Real-Time Measurements by GIRO

Problem is overdetermined in time domain and underdetermined in space domain

IRTAM Approach One

 Overdetermined task in time: obtain 13 coefficients from 96 data points at each GIRO observatory location

Excessive data points can be used for quality control

2. Underdetermined task in space: obtain 76 coefficients from 40+ data locations

Certain interpolation rules are needed

Interpolation Ideas

Currently implemented two-step procedure: (a) time domain, (b) space domain

1. Compute 96 "data-model" deviations in time domain

2. Expand 96 deviations Δ_m in 13 coefficients ΔC

3. Expand each ΔC_i in 76 coefficients ΔC_{ik}

IRTAM vo.16

Time UT = 2004/01/07 19:22:00

 $C_{ik}^* = C_{ik} + \Delta C_{ik}$

Direct computation of global 24-hour error compensation term Real-Time-IRI Task Force Meeting • Lowell, MA • May 19, 2014

Robustness to Autoscaling Errors

LDI

How "bad" is interpolation?

- 1. It is not foF2 that is interpolated
- 2. It is not Δ foF2 that is interpolated
- 3. Each of 13 ΔC_i is interpolated individually

Compare

to Kriging

- Linear least squares estimate
- Predictor function has to be assumed
- Least squares minimize error of predictor at known points

servations

Real-Time-IRI Task Force Meeting

Lowell, MA

May 19, 2014

0.2

0.4

Synaptic Weight Engineering

Synaptic Weight Engineering (2)

Expansion to Jones-Garret 76 coefficients

Gk are not orthogonal

Real-Time-IRI Task Force Meeting • Lowell, MA • May 19, 2014

36

k:76

Orthnormalization of Gk is needed

MASON

LDI

e.g.,
$$G_0 = 1$$

 $G_2 = \sin^2 \chi$ not mutually orthogonal

Use Fk instead of Gk for the fitting

Following suggestions from Jones and Gallet, 1962:

 \rightarrow (1) Use <u>orthonormalization</u> to obtain F_k from G_k

- Jones/Gallet used Gram-Schmidt process
 - Numerical accuracy problems
 - Had to apply G.S. algorithm twice
- We use QR decomposition
- \rightarrow (2) Use a fitting algorithm to obtain $c_{\rm k}$ for $F_{\rm k}$
- \rightarrow (3) "Unwind" coefficients c_k to obtain C_k that are compatible with G_k
 - Use R matrix

IRTAM v0.16

Time UT = 2004/11/07 19:22:00

76-order Least Square Fit, no kidding

Finding $c_{\mathbf{k}}$ coefficients to fit $F_{\mathbf{k}}$ functions to data f

- Multiple approaches tried
- This is 76-order over-determined fitting task
- Inversion of [76 x 1296] matrices is not reliable
- Current best performer: Approximate LS solution

IRTAM v0.16

Time UT = 2004st11.07 19:22:00

 $c_0 = \mathbf{f} \cdot \mathbf{F_0}$ $\mathbf{r_1} = \mathbf{f} - c_0 \mathbf{F_0}$ $c_1 = \mathbf{r_1} \cdot \mathbf{F_1}$ $\mathbf{r_2} = \mathbf{r_1} - c_1 \mathbf{F_1}$ $c_n = \mathbf{r_n} \cdot \mathbf{F_n}$ $\mathbf{r_{n+1}} = \mathbf{r_n} - c_n \mathbf{F_n}$

f Gambit

GAMBIT ENVIRONMENT: SOFTWARE DEMO

IRTAM v0.18

Time UT - 2004/11/07 19:22:00