Real-time ionospheric data processing and modeling: an empirical orthogonal function approach

Shunrong Zhang MIT Haystack Observatory

with contributions from A. Coster and Z. Chen

Real-time IRI Task Force Meeting, Lowell, MA (May 19, 2014)

May 22, 2014 1

Outline

- Motivation
- EOF concept
- EOF-based North America GPS-TEC modeling
- EOF-based Near Real-time data processing
 - DIEOF procedure
 - Case studies
- Summary

Data gaps and non-uniform data resolution

Technology

HAYSTAC

Test data of normalized foF2 from WDC during October 2013.

Empirical Orthogonal Function (EOF)

$$T(t, n, \phi, \lambda) = \sum_{i=1}^{I} b_i(\phi, \lambda) P_i(t, n)$$

- A decomposition of a data set in terms of orthogonal basis functions which are determined from the data.
- The ith basis function is chosen to be orthogonal to the basis functions from the first through i – 1, and to minimize the residual variance. (The basis functions are chosen to be different from each other, and to account for as much variance as possible.)

Principal Component Analysis (PCA)

$$Cb_{i} = \omega_{i}b_{i}$$

C = cov [T (t, n, φ , λ)]

Singular Value Decomposition (SVD)

 $T = U \Sigma W^T$

EOF modes

A test dataset for 10 days over Boulder, CO was processed with EOF decomposition.

Faithfully reproduce the original data with a small number of modes

Outline

- Motivation
- EOF concept
- EOF-based North America GPS-TEC modeling
- EOF-based Near Real-time data processing
 - DIEOF procedure
 - Case studies
- Summary

North America GPS TEC Model

based on GPS TEC data for a full solar cycle 2000 – 2012

Massachusetts Institute of Technology

GPS TEC over North America

7

Mean TEC (spatial variations from EOF basis function mode 1)

Mean temporal variation (EOF mode 1)

East-west Symmetry (spatial variations from EOF basis function mode 2)

10

Magnetic declination

The Mechanism

Zonal wind-induced plasma drifts

Temporal variation (EOF model 2)

GPS TEC over North America 13

Further decomposed temporal variations (EOF mode 2)

Spatial variations from EOF basis function mode 3

Temporal variations of EOF mode 3

GPS TEC over North America 16

Contributions from various EOF modes

Day Number (day)	Start	tart End Interval		hat was 4 200
	90	90	45	between 1-365
Local Time (hour)	Start	End	Interval	between 0-24
	12	12	6	
Geodetic Longitude (degree)	Start	End	Interval	between -13548 E
	-13	-48	3	
Geodetic Latitude (degree)	Start	End	Interval	for NATEC: 21-65
	21	65	3	
Solar Activity	F107 135			F107: monthly mean; Fbar: 81-day mean between 70- 300
	Fbar 135			
Magnetic Activity	ap index 15			Ap index; between 0-100

GPS TEC over North America

Outline

- Motivation
- EOF concept
- EOF-based North America GPS-TEC modeling
- EOF-based Near Real-time data processing
 - DIEOF procedure
 - Case studies
- Summary

DIEOFS: Data Interpolating Empirical Orthogonal Functions

 $T(t, n, \phi, \lambda) = \sum_{i=1}^{I} b_i(\phi, \lambda) P_i(t, n) T_{i,j:} i=1,2, ..., n; j=1:2, ..., m$

- The number of modes I equals to n or m;
- To deal with noisy data and data gaps:
 - When I is truncated to K, the EOF decomposition provides a reconstruction data, smooth and approximated to the original data.
 - If data represented by $T_{i,j}$ is incomplete, an iteration approach may be applied for deriving the best basis functions that may be used to fill in data gaps or even for prediction

Stoneback et al. (2013)

DIEOF procedure

Massachusetts Institute of Technology

First example

- Single site
- 10 days
- 15 min interval
- Using EOF modes 1 and 2
- After 50,000 iterations
- Shown for days 1, 4,7, and 10.

Data gaps on day 6

Technology

HAYSTACK

- Only 3 observational points
- Filled the gaps based on DIEOF
- 3 data points were assimilated

Modes 1 and 2

First example

Second example

Institute of Technology

HAYSTACI

Modes are truncated to 4

With up to 5000 iterations (if not convergent)

Second example

Third example

27

Error estimation, etc

- Set aside a portion of the data, and treat these test data as missing
- Go through the entire DIEOF procedure and estimate those test data, and compare these to original data to calculate RMS

Summary

- A powerful tool for modeling and real-time data processing
 - Smoothing data
 - Filling data gas
- Application for ionospheric predication
 - Using statistical correlation between each of EOF basis functions with geophysical parameters
 - Using EOF basis functions to fill "future data gaps" for predication

Real-time IRI @ MIT

Massachusetts Institute of Technology

