MAXIMIZING "Experience Index" of GIRO Data Repositories

4

XIV INTERNATIONAL GIRO FORUM · 20-23 MAY

Ivan Galkin

University of Massachusetts Lowell Center for Atmospheric Research

Outline

- Getting to lonogram data
- Getting to Plasma Drift data
- Getting to Global Ionosphere Specifications

Scenarios

• Scientist:

- URSI ionospheric characteristics
- Electron density profiles
- Global Ionosphere
- Expert Scientist:
 - lonograms
 - Plasma drifts
- Student:
 - Understand data

- Engineer:
 - Raw data
- HF Prediction Agencies and Radio Amateurs:
 - Real-time specifications
- Other Instrument Teams:
 - Validate their instrument

What do we all want?

GIRO

Users:

- Model ionosphere
- Study processes
- Locate relevant data
- Access data quickly
- Get good quality data
- Avoid format problems
- Avoid fighting computers
- Publish quickly
- Enjoy life

GIRO

Crew:

- Enjoy life
- Make GIRO a powerful tool
- Cut development costs
- Cut maintenance costs
- Cut troubleshooting costs
- Cut documentation costs
- Cut computer HW costs
- Cut networking costs

Three paths to GIRO data

WWW PORTALS

- Fast Chars on the Web
- DriftBase Portal

DIDBase Portal

(no registration necessary)

EXPLORERS

- SAO Explorer
- Drift Explorer

REAL-TIME DISSEMINATION

• FTP Release Server

Three access modes to DIDBase

http://giro.uml.edu/didbase/scaled.php

Compare to http://www.swpc.noaa.gov/ftpdir/lists/iono_day/

GIRO Fast Chars vs. NOAA SWPC

:Product: ElArensillo iono.txt

Global Ionospheric Radio Observatory # GIRO Tabulated Ionospheric Characteristics, Version 1.0 Revision B # Generated by DIDBGetValues on 2014-04-24T17:32:40.785Z ± # Location: GEO 23.0N 72.5E, URSI-Code AH223 AHMEDABAD # Instrument: Ionosonde, Model: DPS-4D ŧ. # Ouerv for measurement intervals of time: # 2012-07-02T01:00:00.785Z - 2012-07-03T07:00:00.785Z # # Data Selection: # CS is Autoscaling Confidence Score (from 0 to 100, 999 if manual scaling, # foF2 [MHz] - F2 layer critical frequency # foF1 [MHz] - F1 layer critical frequency # foE [MHz] - E layer critical frequency ± CS foF2 QD foF1 QD foE QD #Time 2012-07-02T01:07:30.000Z 95 5.825 // --- 2.01 // ____ 2.06 // ____ 2012-07-02T01:15:00.000Z 100 5.875 // ____ 1.96 // 2012-07-02T01:22:30.000Z 95 6.000 // ____ _____ 2.28 // 2012-07-02T01:30:00.000Z 100 6.025 // ____ _____ 2.13 // 2012-07-02T01:37:30.000Z 100 6.125 // ____ _____2.33 // 2012-07-02T01:45:00.000Z 95 6.225 // ____ _____2.38 // 2012-07-02T01:52:30.000Z 95 6.200 // 2012-07-02T02:00:00.000Z 95 6.350 // ____ 2.58 // 2012-07-02T02:07:30.000Z 95 6.413 // 3.43 // 2.68 // 2012-07-02T02:15:00.000Z 95 6.450 // 2.68 // 2012-07-02T02:22:30.0007 100 6 625 // 2 00 //

GIRO Fast Chars

:Issued: 2014 Apr 30 1425 UTC # Prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center # Please send comments and suggestions to SWPC.Webmaster@noaa.gov # # Units for foF2, MUF(D), foEs, foE, fMUF, foF1, fxI & fbEs = MHz

Units for yF2, D, hmE, h'F, h' & hmF2 = km
Units for TEC = 10^16 el/m^2
Missing data: -1.0,-1,-1.00

Real-Time Ionosonde Data El Arenosillo N37E353 Instituto Nacional de Tecnica Aerospacial-DGS-256

# UT	Date	Time															
# YR	MO D	A HHMM	foF2	hmF2	MUF(D)	D	h'F	yF2	fMUF	h'	fxI	foF1	foE	hmE	foEs	fbEs	ITEC
#				202	0.77					400		1 0	1 0			1 0	
2014	04 2	9 0000	0.5	207	2.11		207	00	5.9	42.5	7.0	-1.0	-1.0	-1	5.5	-1.0	3.0
2014	04 2	9 0015	6.3	307	2.74	-1	307	91	5.8	425	6.9	-1.0	-1.0	-1	2.4	-1.0	9.9
2014	04 2	9 0030	6.3	317	2.72	-1	317	94	5.8	428	7.1	-1.0	-1.0	-1	-1.0	-1.0	10.4
2014	04 2	9 0045	6.3	302	2.73	-1	302	83	5.9	440	6.9	-1.0	-1.0	-1	3.6	-1.0	9.1
2014	04 2	9 0100	6.4	302	2.61	-1	302	102	5.9	461	6.9	-1.0	-1.0	-1	-1.0	-1.0	11.4
2014	04 2	9 0115	6.2	297	2.71	-1	297	93	5.7	430	6.9	-1.0	-1.0	-1	-1.0	-1.0	9.8
2014	04 2	9 0130	6.5	297	2.66	-1	297	106	5.9	434	7.1	-1.0	-1.0	-1	-1.0	-1.0	12.4
2014	04 2	9 0145	6.4	292	2.70	-1	292	104	5.9	436	7.0	-1.0	-1.0	-1	-1.0	-1.0	11.8
2014	04 2	9 0200	6.2	292	2.73	-1	292	91	5.8	441	6.8	-1.0	-1.0	-1	-1.0	-1.0	9.7
2014	04 2	9 0215	6.3	297	2.73	-1	297	91	5.9	441	6.9	-1.0	-1.0	-1	-1.0	-1.0	10.0
2014	04 2	9 0230	6.3	297	2.75	-1	297	95	5.9	437	7.1	-1.0	-1.0	-1	-1.0	-1.0	10.5
2014	04 2	9 0245	6.3	287	2.83	-1	287	78	5.9	415	7.0	-1.0	-1.0	-1	-1.0	-1.0	8.6
2014	04 2	9 0330	6.4	267	2.86	-1	267	94	5.8	387	6.9	-1.0	-1.0	-1	-1.0	-1.0	10.6
2014	04 2	9 0345	6.4	257	2.84	-1	257	100	5.9	400	7.1	-1.0	-1.0	-1	-1.0	-1.0	11.3
2014	04 2	9 0400	6.3	267	2.85	-1	267	85	5.7	382	6.9	-1.0	-1.0	-1	-1.0	-1.0	9.2
2014	04 2	9 0415	6.3	270	2.96	-1	270	70	5.9	387	7.1	-1.0	-1.0	-1	-1.0	-1.0	7.7
2014	04 2	9 0430	6.6	262	2.99	-1	262	76	6.2	380	7.2	-1.0	-1.0	-1	2.0	-1.0	9.2

SWPC iono_day

DIDBase vs DriftBase on the Web

Dissemination of IRTAM data

- Currently only animated latest 24-hour maps published on GIRO Web Portal
- GAMBIT Project is near future

Past data

SambitGlobal Adaptive ModelingImage: of the Bottomside Ionospheric Timelines

Prototype is running, release plans by Christmas 2014

Take-home summary

- Fast Chars on the Web: good solution for many tasks
 - Real-time data are available
 - Please pay attention to Confidence Score (CS)
- Use DriftBase Web Portal
- Setup a "GIRO Mirror" is latency is too high
- Watch for GAMBIT Première in December 2014

