Frequency Angular Sounding (FAS) Technique

14

IGH 20

XIV INTERNATIONAL GIRO FORUM · 20-23 MAY

Vadym Paznukhov

Boston College

Frequency Angular Sounding (FAS) Technique

FAS principles

Measured signal parameters:

- ε (t) elevation angle
- $\varphi(t)$ azimuthal angle
- $f_D(t)$ Doppler shift
- τ (t) Signal delay (vert. sound.)

Inverse problem: $(\varepsilon, \varphi, f_D, \tau)_{Rx} \Rightarrow (N, \mathbf{K}, \Omega)$

Frequency Angular Sounding (FAS) Technique

FAS principles

Measured signal parameters:

- ε (t) elevation angle
- $\varphi(t)$ azimuthal angle
- $f_D(t)$ Doppler shift
- τ (t) Signal delay (vert. sound.)

Inverse problem: $(\varepsilon, \varphi, f_D, \tau)_{Rx} \Rightarrow (N, \mathbf{K}, \Omega)$

Surface model visualization

Oblique FAS: cont.

With the use of the spectral representation, one gets solutions

Trajectory parameters spectra: (direct problem)

$$S_{\varepsilon}(\Omega) = N(\Omega)[\sin \varepsilon_{0} \cos \varepsilon_{0} - iH_{0}K(\Omega) \cos \theta(\Omega)]$$

$$S_{\phi}(\Omega) = iH_{0}K(\Omega)N(\Omega) \tan \varepsilon_{0} \sin \theta(\Omega)$$

$$S_{F}(\Omega) = -2iH_{0}\Omega N(\Omega) \sin \varepsilon_{0}/\lambda$$

Reflecting surface spectra: (inverse problem)

$$N(\Omega) = \frac{i\lambda S_F(\Omega)}{2H_0\Omega\sin\varepsilon_0}$$

$$\tan \theta(\Omega) = -\frac{2H_0\Omega\operatorname{Re} S_{\varphi}(\Omega)}{2H_0\Omega\operatorname{Re} S_{\varepsilon}(\Omega)\tan\varepsilon_0 + \lambda\operatorname{Im} S_F(\Omega)\sin\varepsilon_0}$$

$$K(\Omega) = -\frac{2\Omega\operatorname{Im} S_{\varphi}(\Omega)\cos\varepsilon_0}{\lambda\operatorname{Im} S_F(\Omega)\sin\theta(\Omega)}$$

Measurements with FAS technique

Comparing TIDs parameters measured with DPS and ISR.

	Digisonde FAS			ISR			
	Velocity,	Wavelength,	Azimuth,	Velocity,	Wavelength,	Azimuth,	
Date	m/s	km	deg	m/s	km	deg	
15.03.2001 16.03.2001	341 135	655 258	117 -80	305 156	585 274	102 -82	

Comparison of the 30 min TID parameters obtained with FAS and ISR techniques for March 15, 2001 data

	Velocity, m/s	Wavelength,	Propagation	Amplitude,	
		km	direction, deg		
ISR data	305	585	102	2.0 %	
FAS (surface)	341	655	117	0.8 %	
	247	C10		4.0.0/	

Simulation runs to test FAS accuracy

	Run1	Run2	Run3	Run4	Run5	Run6
Propagation						
fo, MHz	8.0	8.0	5.0	5.0	5.0	6.0
UT	17:00	17:00	5:00	5:00	5:00	7:00
Distance, km	324	651	651	651	651	853
TID parameters						
Period, min	30	30	30	30	20	30
Wavelength,k	300	300	300	400	200	300
m						
Direction, deg	180	30	90	190	190	30
Amplitude, A	0.01	0.02	0.02	0.01	0.01	0.02

FAS accuracy test results

FAS accuracy test results (cont)

Experimental setups

Measurements with FAS technique

Millstone Hill, November 2003 (geomagnetically disturbed period)

Antarctica, Feb-Mar 2004 (quiet period) Histogram of TID azimuths. The orange and blue arrows are along the normal to the sunrise (SRT) and sunset (SST) terminators, respectively.

FAS requirements

Approximately: Angles of arrival accuracy: ~1⁰ Spectral resolution: 0.03-0.1Hz Data taking rate: 1..10 min Frequency stability: ~10⁻⁹ (for oblique sounding)

Conclusions and Recommendations

FS technique is capable of measuring TID parameters

FAS technique accuracy is about 10%

FAS technique can be integrated into DPS-4D systems.

We propose to establish Rapid-TID system of TID monitoring based on the FAS technique

