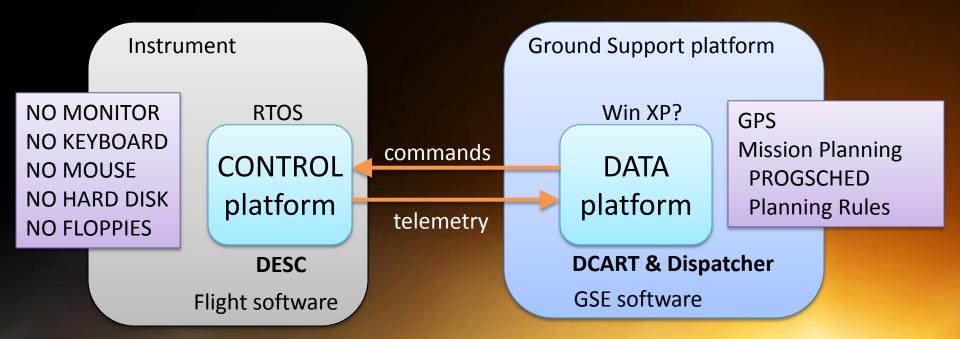
DESC

Embedded System Control Software for DPS4D

Ivan Galkin

University of Massachusetts Lowell Center for Atmospheric Research

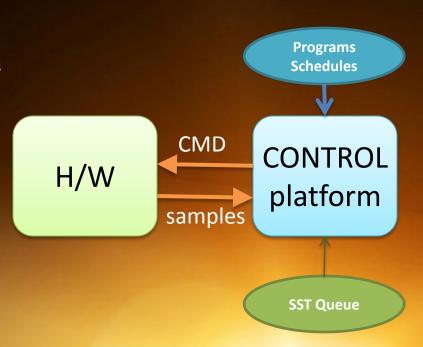

XIV INTERNATIONAL GIRO FORUM · 20-23 MAY

Acknowledgements

- Grigori Khmyrov
- George Cheney
- Chris Granz
- Alexander Kozlov

DESC and DCART

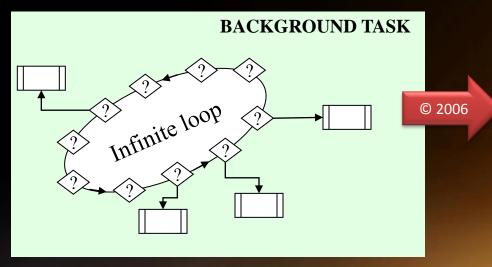
Scheduling digisonde measurements


- Switching schedules at given times
- Schedule progression per schedule definition
- Synchronization to the GPS time reference

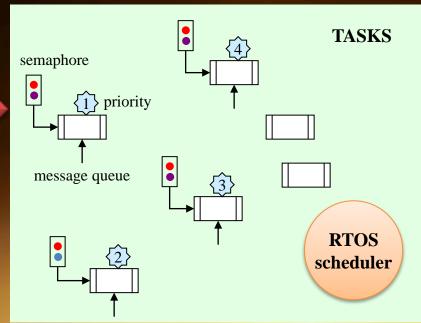
Measurement progression per program definition

- Hardware control
 - Setting up transmission and reception in all measurement modes
 - Initiation of hardware tasks
- Data Acquisition
 - Collection of raw data during the measurements
 - Collection of housekeeping data during BIT
- Packaging and delivery of the sample data to the DATA Platform

Accepting configuration changes


- Program and schedule definitions,
- Schedule start times,
- Restricted Frequency Interval Lists (RFIL),
- Digital receiver configuration,
- Tracking filter configurations.
- Switching operational states in response to commands

DESC Responsibilities



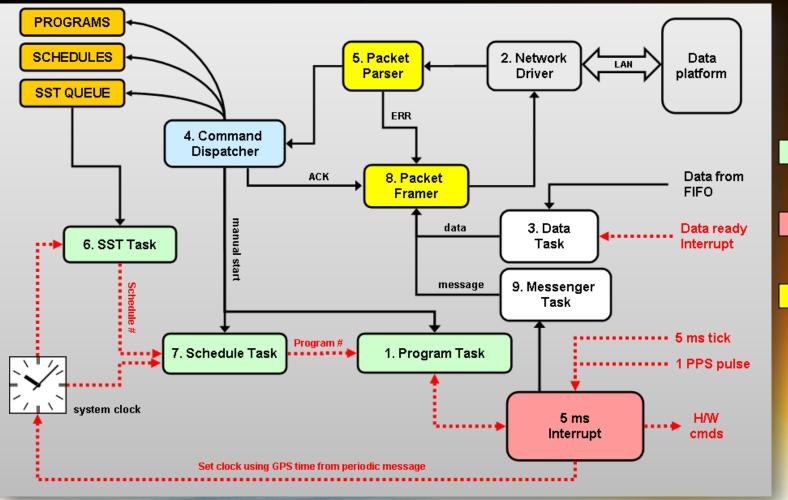
Interrupts happen at various points of the loop Changes to the loop affect timing CPU upgrade affects timing

Operating system manages precise timing of tasks

RTOS Choices

- Starting in 2006, we use RTEMS
 - Attractive price of \$0
 - Active community with ties to aerospace
- Moving to Embedded Linux with Real-Time Kernel
 - Pro: Rapid compatibility with updated computer hardware (drivers)
 - Pro: Applications are decoupled from the kernel
 - Application can fail while kernel is still up and communicating
 - Multi-threading can be used with shared memory rather than piping
 - Input-output with hardware and comms can be done via drivers
 - Can execute multiple applications in a variety of languages
 - OK: Spacecraft applications are known and recommended
 - Con: Existing DESC code has to be reworked
 - Work started in April 2014; language of choice: POSIX C
 - POSIX C: fast track to flight hardware running other RTOS

Pressure of Heritage Designs


BENEFITS

- Faster development
- Tighter schedules
- Meets interface constraints
- Documentation available
 - ICD to DCART carved in stone
- TESTED, PROVEN, "FLOWN"

RISKS

- Poorly documented design decisions
- Loss of quality through changes and adaptations
 - Different OS, for example
- Difficult to predict schedule and cost
- SOMETHING IMPORTANT HAS CHANGED

Measurement Progression

Hard Real-Time

Communications

Dalu 감사합니다

Gracias Danke Ευχαριστίες

THANK YOU

Таск と U Cпасибо Dank

Таск と 財謝 Merci

Obrigado

Köszönöm

ありがとう

IGF 2 14
XIV INTERNATIONAL GIRO FORUM · 20-23 MAY