<u>The Next Digisonde</u> Theme: Fully Software Based (almost) *Moving away from custom ASICs*

Christopher D. Granz Lowell Digisonde International, LLC

Problems with current approach

- Uses a number of Application Specific ICs
 - These become obsolete over time
 - Requires system to be re-engineered using newer parts
- Complex board-level design
- New features often require hardware changes

Hardware Architecture

a second

Single Channel Architecture

Direct Digital Synthesis Transmitter

Understanding Direct Digital Synthesis

$$f_{out} = rac{M \cdot f_c}{2^n}$$

- Where:
 - fout = synthesized output frequency
 - M = digital tuning "step" value
 - fc = digital reference clock
 - n = width of phase accumulator in bits

DDS Advantages (implemented in FPGA)

- Frequency resolution of fc/2ⁿ !
- Extremely flexible / reconfigurable
 - Field updates for improved performance
- No longer tied to specific hardware ASICs

Sampled Waveform, Reconstructed

and the second division of the second divisio

Synthesized Waveform, Frequency Domain

ace	Carrier Hz	Carrier dBm	dBc/Hz at 100 Hz	VBW/RBW	Time/Date	Instrum
ōMHz	3 127 000	2.50	-84.8	1.00	5/20/2014 1:37:11 PM	HP8562A,

LO

Receiver Details

Receiver Details

- Real samples mixed with complex LO
 - All following stages done in complex domain
- Digital down conversion process
 - Finite Impulse Response (FIR) Filter (21-tap)
 - Re-sampling at ~60 kHz (pulse bandwidth = 30 kHz)

• FIR low-pass filter

 $y(n)=\sum_{i=0}^{N-1}a_ix(n-i)$

- Easily implemented in FPGA
- Response easily adjusted by adding/removing stages

Post Processing

- Discrete Fourier Transform
- Radio Frequency Interference Mitigation
 - Determine interference frequency w/ greatest magnitude
 - Synthesize out-of-phase signal
 - Iterative process

XIV INTERNATIONAL GIRO FORUM · 20-23 MAY